ratio.of.two.prop <- function(x, n) { ## Purpose: Calculate the 95% CI of the ratio of two proportions, with application to diagnostic likelihood ratios. ## Arguments: ## x: a vector of two integers (numerator of the two proportions). ## n: a vector of two integers (denominator of the two proportions). ## Return: The point estimate and the 95% confidence interval of the ratio of two proportions, where the ratio is the first proportion divided by the second proportion. ## Author: Feiming Chen ## ________________________________________________ if (x[1] == 0 || x[1] == n[1] || x[2] == 0 || x[2] == n[2]) { x <- x + 0.5 n <- n + 1 } p <- x / n se <- sqrt((1 - p[1]) / (p[1] * n[1]) + (1 - p[2]) / (p[2] * n[2])) pp <- p[1] / p[2] # point estimate LB <- exp(log(pp) - 1.96 * se) UB <- exp(log(pp) + 1.96 * se) c(pp, LB, UB) } if (F) { # Unit Test ratio.of.two.prop(c(431, 30), c(460, 146)) ## [1] 4.5599 3.3116 6.2786 ratio.of.two.prop(c(0, 146), c(460, 146)) ## [1] 0.00108830 0.00006817 0.01737423 }
Thursday, May 20, 2021
Calculate the 95% CI of the ratio of two proportions, with application to diagnostic likelihood ratios
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment