search.n.binary.proportion <- function(p, cl, alpha = 0.05) { ## Purpose: Search for the sample size that produces a specific (lower) confidence limit. ## Arguments: ## p: reported point estimate ## cl: reported lowered confidence limit ## alpha: type I error rate for two-sided confidence interval. Default to 5%. ## Return: a conservative estimate for the 95% confidence interval ## Author: Feiming Chen ## ________________________________________________ N <- 50 # start at sample size of 50 while (N < 2000) { # end at sample size of 1000 x <- round(N * p) r <- prop.test(x, N, conf.level = 1 - alpha, correct = FALSE) cl2 <- r$conf.int[1] if (cl2 > cl) break N <- N + 1 } N <- N - 1 x <- floor(N * p) cat("Sample Size =", N, ", X =", x, "\n") prop.test(x, N, conf.level = 0.95) } if (F) { # Unit Test search.n.binary.proportion(0.849, 0.804, alpha = 0.1) ## Sample Size = 194 , X = 164 ## 1-sample proportions test with continuity correction ## data: x out of N, null probability 0.5 ## X-squared = 91.2, df = 1, p-value <2e-16 ## alternative hypothesis: true p is not equal to 0.5 ## 95 percent confidence interval: ## 0.78497 0.89167 ## sample estimates: ## p ## 0.84536 }
Friday, April 16, 2021
Search for the sample size that produces a specific (lower) confidence limit
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment