Friday, December 7, 2018

Calculate Nonparametric 95% Reference Interval


calc.reference.interval <- function(val, wgt)
{
    ## Purpose: Calculate Nonparametric 95% Reference Interval. 
    ## Notes: 
    ##    1) Each Reference Interval needs at least 120 reference observations (per CLSI C28-A3c).
    ##    2) A general criterion for determining sample size is that the width of the 90% confidence interval (CI)
    ##       for a reference limit should be acceptably small relative to the width of the 95% reference interval
    ##       itself (Harris and Boyd); these authors recommend that the width of the 90% CI be less than 0.2 times
    ##       the width of the reference interval. 
    ## Arguments:
    ##   val: numerical measurements
    ##   wgt: weight (frequency) of these measurements
    ## Return: a Nonparametric 95% Reference Interval. 
    ## Author: Feiming Chen
    ## ________________________________________________

    x <- rep(val, wgt)
    cat("N =", length(x), "\n")
    cat("Reference Interval:\n")
    print(q <- quantile(x, probs = c(0.025, 0.975)))

    ## Confidence Intervals for the Nonparametric Method (Using Bootstrap with 2000 Reps)
    require(boot)
    b <- boot(x, 
              function(x, i) {
                  quantile(x[i], probs = c(0.025, 0.975))
              }, R = 2000)

    cat("\n90% Bootstrap CI for Lower 95% Reference Limit:")
    L <- boot.ci(b, conf=0.90, type="basic", index=1)
    print(L2 <- L$basic[1,c(4,5)])

    cat("\n90% Bootstrap CI for Upper 95% Reference Limit:")
    U <- boot.ci(b, conf=0.90, type="basic", index=2)
    print(U2 <- U$basic[1,c(4,5)])

    cat("\nRatio of Limit CI Width to Reference Interval Width (Recommend: < 0.2):\n")
    q2 <- diff(q)                       # Width of Reference Interval
    L3 <- diff(L2)                      # Width of Lower Limit 90% CI
    U3 <- diff(U2)                      # Width of Upper Limit 90% CI
    cat("Lower Limit CI Width Ratio:", round(L3 / q2, 3), "\n")
    cat("Upper Limit CI Width Ratio:", round(U3 / q2, 3), "\n")

    list(Reference.Limit = q, 
         Lower.Limit.CI = L2,
         Upper.Limit.CI = U2)
}
if (F) {                                # Unit Test
    ## Data from CLSI C28-A3c (Reference Interval) Table 4 (Frequency Distributions of Calcium in 240 Medical Students by Sex)
    ## Only Women's Data. CLSI Reported "Nonparametric" Method: N = 120, Calcium.Women = (8.9, 10.2),
    ##                    Lower Limit 90% CI = (8.8, 9.1), Upper Limit 90% CI = (10.1, 10.3)
    val <- c(8.8,8.9,9.0,9.1,9.2,9.3,9.4,9.5,9.6,9.7,9.8,9.9,10.0,10.1,10.2,10.3,10.4,10.5,10.6)
    wgt <- c(1,2,1,3,11,11,8,16,16,26,8,7,3,2,3,2,0,0,0)
    ans <- calc.reference.interval(val, wgt)
    ##   2.5%   97.5% 
    ## 8.9975 10.2000 
}

No comments:

Post a Comment