diagnostic.decision <- function(Sensitivity, Specificity,
Prevalence = 0.01,
AE.Risk = 0.005,
Predicate.Sensitivity = 0.9,
Predicate.Specificity = 0.9,
Pretest.Prob = c(0.1, 0.25, 0.5, 0.75, 0.9),
Cost.Benefit.Ratio = 1
)
{
## Purpose: Provide metrics to evaluate a medical test.
## Arguments:
## Sensitivity, Specificity: between 0 and 1.
## Prevalence: Disease Prevalence in the Target Population
## Pretest.Prob: a vector of pre-test probability
## AE.Risk: Risk of an adverse event due to treatment for False Positive patients.
## Predicate.Sensitivity, Predicate.Specificity: Performance of the comparator.
## Cost.Benefit.Ratio: Cost/Benefit = Cost(False Positive) / Cost(False Negative); default to 1.
## Return: Likelihood Ratios, Post-test Probability, Plots, etc.
## Author: Feiming Chen
## ________________________________________________
dev.close()
p2o <- function(p) p/(1 - p) # convert probability to odds
o2p <- function(o) o/(1 + o) # convert odds to probability
r <- function(x) round(x, 2) # rounding function
cat("\n----------- Diagnostic Performance for Subject Device ------------\n")
cat("Sensitivity =", r(Sensitivity), "\n")
cat("Specificity =", r(Specificity), "\n\n")
cat("Risk Difference Evaluation:\n")
J <- Sensitivity + Specificity - 1 # Risk Difference = Youden's Index = J
cat("J =", r(J), "\n\n")
LR.pos <- Sensitivity / (1 - Specificity) # Positive Likelihood Ratio (Risk Ratio)
LR.neg <- (1 - Sensitivity) / Specificity # Negative Likelihood Ratio
cat("Risk Ratio Evaluation:\n")
cat("LR+ =", r(LR.pos), "\n")
cat("LR- =", r(LR.neg), "\n\n")
cat("Predictive Values:\n")
PPV <- o2p(Sensitivity / (1 - Specificity) * p2o(Prevalence))
NPV <- o2p(Specificity / (1 - Sensitivity) / p2o(Prevalence))
cat("PPV = ", r(PPV), "\n")
cat("NPV = ", r(NPV), "\n")
cat("\nDecision Analysis:\n")
cat("Cost/Benefit Ratio =", Cost.Benefit.Ratio, "\n")
Risk.Threshold <- o2p(Cost.Benefit.Ratio)
cat("Implied Risk Threshold =", r(Risk.Threshold), "\n")
cat("\nRegret Graph Analysis:\n")
abcissas.1 <- o2p(Cost.Benefit.Ratio / LR.pos)
abcissas.2 <- o2p(Cost.Benefit.Ratio / LR.neg)
cat("Disease Prevalence =", Prevalence, "\n")
cat("Range of Disease Prevalence (Pre-Test Probability) to Choose a Test Strategy:\n")
cat("0 --", r(abcissas.1), ": Test for None (Presume Negative; Treatment None)\n")
cat(r(abcissas.1),"--", r(abcissas.2), ": Subject Device Test\n")
cat(r(abcissas.2), "-- 1 : Test for All (Presume Positive; Treatment All)\n")
cat("\n----------- Diagnostic Performance for Predicate Device ------------\n")
cat("Sensitivity =", r(Predicate.Sensitivity), "\n")
cat("Specificity =", r(Predicate.Specificity), "\n\n")
cat("Risk Difference Evaluation:\n")
J <- Predicate.Sensitivity + Predicate.Specificity - 1 # Risk Difference = Youden's Index = J
cat("J =", r(J), "\n\n")
LR2.pos <- Predicate.Sensitivity / (1 - Predicate.Specificity) # Positive Likelihood Ratio (Risk Ratio)
LR2.neg <- (1 - Predicate.Sensitivity) / Predicate.Specificity # Negative Likelihood Ratio
cat("Risk Ratio Evaluation:\n")
cat("LR+ =", r(LR2.pos), "\n")
cat("LR- =", r(LR2.neg), "\n\n")
cat("\n----------- Compare the Subject and Predicate Device ------------\n")
cat("Likelihood Ratio Graph:\n")
plot(c(1 - Predicate.Specificity, 1 - Specificity), c(Predicate.Sensitivity, Sensitivity),
xlim = c(0, 1), ylim = c(0, 1), asp = 1, xlab = "False Positive Rate", ylab = "True Positive Rate", pch = 19, col = c("red", "blue"), bty = "n",
main = "Likelihood Ratio Graph")
legend("bottomright", legend = c("Predicate", "Subject"), pch = 19, bg="lightyellow", col = c("red", "blue"), title = "Device")
abline(0, LR.pos)
min.spec <- 1 - 1/LR.pos
cat("Minimum Specificity for a new test to be superior to the subject device in terms of PPV and NPV =", r(min.spec), "\n")
min.sens <- 1 - LR.neg
abline(min.sens, LR.neg)
cat("Minimum Sensitivity for a new test to be superior to the subject device in terms of PPV and NPV =", r(min.sens), "\n")
cat("\n----------- Expected Diagnostic Yield ------------\n")
cat("Assume 1,000,000 patients from the target populaiton\n")
cat("Assume the Disease Prevalence =", Prevalence, "\n")
cat("Assume the Risk of an Adverse Event due to Treatment for False Positive Patients =", AE.Risk, "\n")
cat("Predicate Device Performance: Sensitivity =", Predicate.Sensitivity, ", Specificity =", Predicate.Specificity, "\n")
cat("Subject Device Performance: Sensitivity =", Sensitivity, ", Specificity =", Specificity, "\n\n")
n <- 1000000
n1 <- round(n * Prevalence) # number with disease
n2 <- n - n1 # number without disease
EDY <- matrix(c(n1, n2,
n1 * Sensitivity, n2 * (1 - Specificity),
n1 * Predicate.Sensitivity, n2 * (1 - Predicate.Specificity),
n1 * Sensitivity - n1 * Predicate.Sensitivity,
n2 * (1 - Specificity) - n2 * (1 - Predicate.Specificity)
), 2)
FP.per.TP <- apply(EDY, 2, function(x) round(x[2]/(x[1] + 0.01)))
FP.per.TP.Pct <- FP.per.TP / FP.per.TP[1] * 100
EDY1 <- round(rbind(EDY, FP.per.TP, FP.per.TP.Pct))
dimnames(EDY1) <- list(c("Disease", "No.Disease", "Number.of.FP.Per.TP", "Percent.of.Worst.Case"), c("Expected.Number", "Subject+", "Predicate+", "Difference"))
print(EDY1)
cat("\nSafety Evaluation:\n")
SAF <- matrix(round(c(n2,
n2 * (1 - Specificity) * AE.Risk,
n2 * (1 - Predicate.Specificity) * AE.Risk,
n2 * (1 - Specificity) * AE.Risk - n2 * (1 - Predicate.Specificity) * AE.Risk,
(n2 * (1 - Specificity) * AE.Risk - n2 * (1 - Predicate.Specificity) * AE.Risk) * 100 /
(n1 * Sensitivity - n1 * Predicate.Sensitivity + 0.001))), 1,
dimnames = list(c("No.Disease"), c("Expected.Number", "Subject+", "Predicate+", "Difference", "Number.of.AE.Per.100.Extra.TP")))
print(SAF)
cat("\n----------- Medical Decision Making ------------\n")
cat("Pre-test Probability =", Pretest.Prob, "\n")
Pretest.Odds <- p2o(Pretest.Prob)
cat("Pre-test Odds =", r(Pretest.Odds), "\n\n")
Posttest.Odds.pos <- Pretest.Odds * LR.pos # with positive diagnostic result
Posttest.Odds.neg <- Pretest.Odds * LR.neg # with negative diagnostic result
Posttest.Prob.pos <- o2p(Posttest.Odds.pos)
Posttest.Prob.neg <- o2p(Posttest.Odds.neg)
cat("IF the diagnostic test is Positive:\n")
cat("Post-test Odds =", r(Posttest.Odds.pos), "\n")
cat("Post-test Probability =", r(Posttest.Prob.pos), "\n\n")
cat("IF the diagnostic test is Negative:\n")
cat("Post-test Odds =", r(Posttest.Odds.neg), "\n")
cat("Post-test Probability =", r(Posttest.Prob.neg), "\n\n")
N <- length(Pretest.Prob)
x <- rep(0, N)
dev.new()
plot(c(-1.1, 1.1), c(0, 1), type="n", xlab="", ylab="Disease Probability", axes=F,
main="Pre-Test Probability is updated to Post-Test Probability,\nafter a Diagnostic Test.",
sub=paste("Diagnostic Test: Sensitivity =", r(Sensitivity), ", Specificity =", r(Specificity),
", LR+ =", r(LR.pos), ", LR- =", r(LR.neg)))
arrows(x, Pretest.Prob, x-1, Posttest.Prob.neg, length=0.15)
arrows(x, Pretest.Prob, x+1, Posttest.Prob.pos, length=0.15)
points(x, Pretest.Prob, pch=19)
points(x-1, Posttest.Prob.neg, pch=19)
points(x+1, Posttest.Prob.pos, pch=19)
axis(side=1, at=c(-1, 0, 1), labels=c("Post-Test (Test = NEG)", "Pre-Test", "Post-Test (Test = POS)"))
axis(side=2, at=seq(0, 1, 0.1))
o <- 0.2
text(x, Pretest.Prob, labels=Pretest.Prob, pos=3, offset=o)
text(x-1, Posttest.Prob.neg, labels=round(Posttest.Prob.neg, 2), pos=2, offset=o)
text(x+1, Posttest.Prob.pos, labels=round(Posttest.Prob.pos, 2), pos=4, offset=o)
list(EDY = EDY1, SAF = SAF)
}
if (F) { # Unit Test
a <- diagnostic.decision(Sensitivity = 0.64,
Specificity = 0.84,
Prevalence = 0.0022,
AE.Risk = 0.0068,
Predicate.Sensitivity = 0.224,
Predicate.Specificity = 0.881)
}