Friday, June 28, 2019

Likelihood Ratios for Medical Decision Making

diagnostic.decision <- function(Sensitivity, Specificity,
                                Prevalence = 0.01,
                                AE.Risk = 0.005,
                                Predicate.Sensitivity = 0.9, 
                                Predicate.Specificity = 0.9, 
                                Pretest.Prob = c(0.1, 0.25, 0.5, 0.75, 0.9),
                                Cost.Benefit.Ratio = 1
                                )
{
    ## Purpose: Provide metrics to evaluate a medical test. 
    ## Arguments:
    ##   Sensitivity, Specificity: between 0 and 1.
    ##   Prevalence: Disease Prevalence in the Target Population
    ##   Pretest.Prob: a vector of pre-test probability
    ##   AE.Risk: Risk of an adverse event due to treatment for False Positive patients.
    ##   Predicate.Sensitivity, Predicate.Specificity: Performance of the comparator.
    ##   Cost.Benefit.Ratio: Cost/Benefit = Cost(False Positive) / Cost(False Negative); default to 1. 
    ## Return: Likelihood Ratios, Post-test Probability, Plots, etc.

    ## Author: Feiming Chen
    ## ________________________________________________

    dev.close()
    p2o <- function(p) p/(1 - p)        # convert probability to odds
    o2p <- function(o) o/(1 + o)        # convert odds to probability
    r <- function(x) round(x, 2)           # rounding function

    cat("\n----------- Diagnostic Performance for Subject Device ------------\n")
    cat("Sensitivity =", r(Sensitivity), "\n")   
    cat("Specificity =", r(Specificity), "\n\n") 

    cat("Risk Difference Evaluation:\n")
    J <- Sensitivity + Specificity - 1  # Risk Difference = Youden's Index = J
    cat("J =", r(J), "\n\n") 

    LR.pos <- Sensitivity / (1 - Specificity) # Positive Likelihood Ratio (Risk Ratio)
    LR.neg <- (1 - Sensitivity) / Specificity # Negative Likelihood Ratio
    cat("Risk Ratio Evaluation:\n")
    cat("LR+ =", r(LR.pos), "\n")   
    cat("LR- =", r(LR.neg), "\n\n") 

    cat("Predictive Values:\n")
    PPV <- o2p(Sensitivity / (1 - Specificity) * p2o(Prevalence))
    NPV <- o2p(Specificity / (1 - Sensitivity) / p2o(Prevalence))
    cat("PPV = ", r(PPV), "\n")
    cat("NPV = ", r(NPV), "\n")

    cat("\nDecision Analysis:\n")
    cat("Cost/Benefit Ratio =", Cost.Benefit.Ratio, "\n")
    Risk.Threshold <- o2p(Cost.Benefit.Ratio)
    cat("Implied Risk Threshold =", r(Risk.Threshold), "\n")

    cat("\nRegret Graph Analysis:\n")
    abcissas.1 <- o2p(Cost.Benefit.Ratio / LR.pos)
    abcissas.2 <- o2p(Cost.Benefit.Ratio / LR.neg)
    cat("Disease Prevalence =", Prevalence, "\n")
    cat("Range of Disease Prevalence (Pre-Test Probability) to Choose a Test Strategy:\n")
    cat("0 --", r(abcissas.1), ": Test for None (Presume Negative; Treatment None)\n")
    cat(r(abcissas.1),"--", r(abcissas.2), ": Subject Device Test\n")
    cat(r(abcissas.2), "-- 1 : Test for All (Presume Positive; Treatment All)\n")    

    cat("\n----------- Diagnostic Performance for Predicate Device ------------\n")
    cat("Sensitivity =", r(Predicate.Sensitivity), "\n")   
    cat("Specificity =", r(Predicate.Specificity), "\n\n") 

    cat("Risk Difference Evaluation:\n")
    J <- Predicate.Sensitivity + Predicate.Specificity - 1  # Risk Difference = Youden's Index = J
    cat("J =", r(J), "\n\n") 

    LR2.pos <- Predicate.Sensitivity / (1 - Predicate.Specificity) # Positive Likelihood Ratio (Risk Ratio)
    LR2.neg <- (1 - Predicate.Sensitivity) / Predicate.Specificity # Negative Likelihood Ratio
    cat("Risk Ratio Evaluation:\n")
    cat("LR+ =", r(LR2.pos), "\n")   
    cat("LR- =", r(LR2.neg), "\n\n") 

    cat("\n----------- Compare the Subject and Predicate Device ------------\n")
    cat("Likelihood Ratio Graph:\n")
    plot(c(1 - Predicate.Specificity, 1 - Specificity), c(Predicate.Sensitivity, Sensitivity), 
         xlim = c(0, 1), ylim = c(0, 1), asp = 1, xlab = "False Positive Rate", ylab = "True Positive Rate", pch = 19, col = c("red", "blue"), bty = "n", 
         main = "Likelihood Ratio Graph")
    legend("bottomright", legend = c("Predicate", "Subject"), pch = 19, bg="lightyellow", col = c("red", "blue"), title = "Device")
    abline(0, LR.pos)                 
    min.spec <- 1 - 1/LR.pos           
    cat("Minimum Specificity for a new test to be superior to the subject device in terms of PPV and NPV =", r(min.spec), "\n")

    min.sens <- 1 - LR.neg
    abline(min.sens, LR.neg)
    cat("Minimum Sensitivity for a new test to be superior to the subject device in terms of PPV and NPV =", r(min.sens), "\n")

    cat("\n----------- Expected Diagnostic Yield ------------\n")
    cat("Assume 1,000,000 patients from the target populaiton\n")
    cat("Assume the Disease Prevalence =", Prevalence, "\n")
    cat("Assume the Risk of an Adverse Event due to Treatment for False Positive Patients =", AE.Risk, "\n")
    cat("Predicate Device Performance: Sensitivity =", Predicate.Sensitivity, ", Specificity =", Predicate.Specificity, "\n")
    cat("Subject Device Performance: Sensitivity =", Sensitivity, ", Specificity =", Specificity, "\n\n")
    n <- 1000000
    n1 <- round(n * Prevalence)         # number with disease
    n2 <- n - n1                        # number without disease

    EDY <- matrix(c(n1, n2,
                    n1 * Sensitivity, n2 * (1 - Specificity),
                    n1 * Predicate.Sensitivity, n2 * (1 - Predicate.Specificity),
                    n1 * Sensitivity - n1 * Predicate.Sensitivity, 
                    n2 * (1 - Specificity) - n2 * (1 - Predicate.Specificity)
                    ), 2)
    FP.per.TP <- apply(EDY, 2, function(x) round(x[2]/(x[1] + 0.01)))
    FP.per.TP.Pct <- FP.per.TP / FP.per.TP[1] * 100
    EDY1 <- round(rbind(EDY, FP.per.TP, FP.per.TP.Pct))
    dimnames(EDY1) <-  list(c("Disease", "No.Disease", "Number.of.FP.Per.TP", "Percent.of.Worst.Case"), c("Expected.Number", "Subject+", "Predicate+", "Difference"))
    print(EDY1)
    cat("\nSafety Evaluation:\n")
    SAF <- matrix(round(c(n2,
                          n2 * (1 - Specificity) * AE.Risk,
                          n2 * (1 - Predicate.Specificity) * AE.Risk,
                          n2 * (1 - Specificity) * AE.Risk - n2 * (1 - Predicate.Specificity) * AE.Risk, 
                          (n2 * (1 - Specificity) * AE.Risk - n2 * (1 - Predicate.Specificity) * AE.Risk) * 100 /
                          (n1 * Sensitivity - n1 * Predicate.Sensitivity + 0.001))), 1,
                  dimnames = list(c("No.Disease"), c("Expected.Number", "Subject+", "Predicate+", "Difference", "Number.of.AE.Per.100.Extra.TP")))
    print(SAF)


    cat("\n----------- Medical Decision Making ------------\n")
    cat("Pre-test Probability =", Pretest.Prob, "\n")
    Pretest.Odds <- p2o(Pretest.Prob)
    cat("Pre-test Odds =", r(Pretest.Odds), "\n\n")
    Posttest.Odds.pos <- Pretest.Odds * LR.pos # with positive diagnostic result
    Posttest.Odds.neg <- Pretest.Odds * LR.neg # with negative diagnostic result
    Posttest.Prob.pos <- o2p(Posttest.Odds.pos)
    Posttest.Prob.neg <- o2p(Posttest.Odds.neg)

    cat("IF the diagnostic test is Positive:\n")
    cat("Post-test Odds =", r(Posttest.Odds.pos), "\n")
    cat("Post-test Probability =", r(Posttest.Prob.pos), "\n\n")

    cat("IF the diagnostic test is Negative:\n")
    cat("Post-test Odds =", r(Posttest.Odds.neg), "\n")
    cat("Post-test Probability =", r(Posttest.Prob.neg), "\n\n")

    N <- length(Pretest.Prob)
    x <- rep(0, N)
    
    dev.new()
    plot(c(-1.1, 1.1), c(0, 1), type="n", xlab="", ylab="Disease Probability", axes=F,
         main="Pre-Test Probability is updated to Post-Test Probability,\nafter a Diagnostic Test.",
         sub=paste("Diagnostic Test: Sensitivity =", r(Sensitivity), ", Specificity =", r(Specificity), 
                   ", LR+ =", r(LR.pos), ", LR- =", r(LR.neg)))
    arrows(x, Pretest.Prob, x-1, Posttest.Prob.neg, length=0.15)
    arrows(x, Pretest.Prob, x+1, Posttest.Prob.pos, length=0.15)
    points(x, Pretest.Prob, pch=19)
    points(x-1, Posttest.Prob.neg, pch=19)
    points(x+1, Posttest.Prob.pos, pch=19)
    axis(side=1, at=c(-1, 0, 1), labels=c("Post-Test (Test = NEG)", "Pre-Test", "Post-Test (Test = POS)"))
    axis(side=2, at=seq(0, 1, 0.1))
    o <- 0.2
    text(x, Pretest.Prob, labels=Pretest.Prob, pos=3, offset=o)
    text(x-1, Posttest.Prob.neg, labels=round(Posttest.Prob.neg, 2), pos=2, offset=o)
    text(x+1, Posttest.Prob.pos, labels=round(Posttest.Prob.pos, 2), pos=4, offset=o)

    list(EDY = EDY1, SAF = SAF)
}
if (F) {                                # Unit Test
    a <- diagnostic.decision(Sensitivity = 0.64, 
                             Specificity = 0.84, 
                             Prevalence = 0.0022,
                             AE.Risk = 0.0068,
                             Predicate.Sensitivity = 0.224,
                             Predicate.Specificity = 0.881)

}





----------- Diagnostic Performance for Subject Device ------------
Sensitivity = 0.64 
Specificity = 0.84 

Risk Difference Evaluation:
J = 0.48 

Risk Ratio Evaluation:
LR+ = 4 
LR- = 0.43 

Predictive Values:
PPV =  0.01 
NPV =  1 

Decision Analysis:
Cost/Benefit Ratio = 1 
Implied Risk Threshold = 0.5 

Regret Graph Analysis:
Disease Prevalence = 0.0022 
Range of Disease Prevalence (Pre-Test Probability) to Choose a Test Strategy:
0 -- 0.2 : Test for None (Presume Negative; Treatment None)
0.2 -- 0.7 : Subject Device Test
0.7 -- 1 : Test for All (Presume Positive; Treatment All)

----------- Diagnostic Performance for Predicate Device ------------
Sensitivity = 0.22 
Specificity = 0.88 

Risk Difference Evaluation:
J = 0.1 

Risk Ratio Evaluation:
LR+ = 1.88 
LR- = 0.88 


----------- Compare the Subject and Predicate Device ------------
Likelihood Ratio Graph:
Minimum Specificity for a new test to be superior to the subject device in terms of PPV and NPV = 0.75 
Minimum Sensitivity for a new test to be superior to the subject device in terms of PPV and NPV = 0.57 

----------- Expected Diagnostic Yield ------------
Assume 1,000,000 patients from the target populaiton
Assume the Disease Prevalence = 0.0022 
Assume the Risk of an Adverse Event due to Treatment for False Positive Patients = 0.0068 
Predicate Device Performance: Sensitivity = 0.224 , Specificity = 0.881 
Subject Device Performance: Sensitivity = 0.64 , Specificity = 0.84 

                      Expected.Number Subject+ Predicate+ Difference
Disease                          2200     1408        493        915
No.Disease                     997800   159648     118738      40910
Number.of.FP.Per.TP               454      113        241         45
Percent.of.Worst.Case             100       25         53         10

Safety Evaluation:
           Expected.Number Subject+ Predicate+ Difference Number.of.AE.Per.100.Extra.TP
No.Disease          997800     1086        807        278                            30

----------- Medical Decision Making ------------
Pre-test Probability = 0.1 0.25 0.5 0.75 0.9 
Pre-test Odds = 0.11 0.33 1 3 9 

IF the diagnostic test is Positive:
Post-test Odds = 0.44 1.33 4 12 36 
Post-test Probability = 0.31 0.57 0.8 0.92 0.97 

IF the diagnostic test is Negative:
Post-test Odds = 0.05 0.14 0.43 1.29 3.86 
Post-test Probability = 0.05 0.12 0.3 0.56 0.79